S-Shaped Fused Azacorannulene Dimer: Structural and Redox Properties
Because of their unique structural and chemical properties, buckybowl molecules have
attracted considerable attention in a wide range of scientific disciplines. The importance
and utility of buckybowl molecules significantly increases once they acquire larger
π-surface area and/or heteroatoms. The fusion of buckybowl molecules has emerged as
a new strategy to extend the π-surface of polycyclic aromatic compounds; however,
the π-extension of heteroatom-embedded buckybowls by the fusion strategy is still
rare. Here we report the synthesis and propeties of a fused azacorannulene dimer bearing
a C62N2 core (
Introduction
Buckybowls are bowl-shaped polycyclic aromatic molecules that are regarded as fragments
of fullerenes and typically bear pentagons and hexagons arranged to satisfy the isolated-pentagon
rule (IPR)a,1,2 Due to their distinct architectural structure and unique properties, buckybowl molecules
have been applied to a wide range of scientific disciplines,3–6 including organic electronics7–10 and supramolecular chemistry.11–14 Since the appeal of buckybowls to the scientific community will largely increase
if they acquire larger π-surface area, significant effort has been devoted to the
extension of buckybowls’ π-surface.15–17 In general, the π-extension of buckybowls, such as corannulene and sumanene, can
be achieved by functionalization (introduction of substituents) followed by cyclization.3–6,15–17 Another effective method for buckybowl π-extension is the fusion of two or more buckybowls
to form a single fully conjugated entity, resulting in more π-extended fullerene fragments.
Since the first report in 1994,18 various fused corannulenes19–24 have been synthesized and investigated (Figure 1a).
Figure 1 | (a) Selected examples of fused buckybowls. (b) Fused heteroatom-containing buckybowl
dimers.
Despite the significant progress in π-extended buckybowls, the π-extension by the
fusion strategy of heteroatom-embedded buckybowls has not emerged until quite recently
(Figure 1b).25,26 In 2021, Zhang et al.27 reported the synthesis of compound
Experimental Methods
Synthesis of azacorannulene dimer 1a
To a mixture of compound 4 (60 mg, 0.035 mmol), Pd(OAc)2 (23 mg, 0.10 mmol), and t-Bu2MePH·BF4 (77 mg, 0.31 mmol) in a 25-mL Schlenk tube were added 1,8-diazabicyclo[5.4.0]undec-7-ene
(0.75 mL) and N,N-dimethylformamide (3.0 mL) via a syringe. After nitrogen gas was bubbled into the
solution for 10 min, the mixture was stirred for 22 h at 160 °C. After cooling to
room temperature and dilution with toluene (5 mL), the mixture was washed with water
(3 × 5 mL) and dried over sodium sulfate. After the filtration, the mixture was evaporated
in vacuo. The crude product was purified by silica gel column chromatography and eluted
with hexane/dichloromethane (19/1) to obtain compound
Results and Discussion
Scheme 1 illustrates the synthetic strategy of fused azacorannulene dimer
Scheme 1 | Synthetic route to fused azacorannulene dimer 1a.
The single crystal of
Figure 2 | (a) Oak Ridge thermal ellipsoid plot structure of 1a with thermal ellipsoids at 50% probability. Hydrogen atoms and t-butyl group are
omitted. (b) Side view and bowl depths of 1a. (c) Dihedral angle of the aza[5]helicene moiety. (d) Partial packing structure of
1a (stick model) with one t-butyl group shown using a transparent space-filling model.
The molecular orbitals of
Figure 3 | Kohn–Sham molecular orbitals (from HOMO−1 to LUMO+1) of 1 calculated at the B3LYP/6-31G(d) level of theory.
Conformational analysis of
Figure 4 | Interconversion pathways of 1 calculated at the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d) level of theory. Blue highlights
indicate a transition state that involves a helicene flipping of the [5]helicene moiety,
while pink highlights indicate a transition state that involves a bowl inversion of
the azacorannulene unit.
To investigate the redox properties of
Figure 5 | CV (red) and DPV (blue) of 1a (0.10 mM) measured under inert atmosphere with Bu4NPF6 (0.10 M) in dichloromethane using Ag/Ag+ as the reference electrode, Pt as the working electrode, and Pt wire as the counter
electrode.
Encouraged by the reversible oxidation waves observed in the CV analyses, stepwise
chemical oxidation of
Scheme 2 | Stepwise oxidation to form radical cation 1a
The changes from neutral
Figure 6 | UV–vis–NIR spectra of 1a titrated with (a) AgSbF6 (0–3.0 equiv) and (b) TFA (0–300 equiv) in dichloromethane (5.0 × 10−4 M).
The formation of radical cation
Figure 7 | Variable-temperature ESR spectra of monoradical cation 1a
The aromaticity of compounds
Figure 8 | (a) NICS(0) values for 1 (black), 1
Conclusion
We have successfully designed and synthesized the fully conjugated azacorannulene
dimer
Footnotes
a Although there is debate over this terminology, we refer to the bowl-shaped polycyclic aromatic molecules that exhibit a fragment structure of fullerenes that satisfy the IPR as a “buckybowl.”
b CCDC 2151023 (
Supporting Information
Supporting Information is available and includes synthesis and characterization of compounds; NMR, MS, UV–vis–NIR, and ESR spectra; X-ray crystallographic data; and theoretical calculations.
Conflict of Interest
There is no conflict of interest to report.
Funding Information
This work was supported by Nanyang Technological University.
Acknowledgments
Computing resources from the NTU High Performance Computing Team are gratefully acknowledged. We thank Dr. Yongxin Li (NTU) for his assistance with the X-ray diffraction analysis.
References
- 1. Barth W. E.; Lawton R. G.Dibenzo[ghi,mno]fluoranthene.J. Am. Chem. Soc.1966, 88, 380–381. Google Scholar
- 2. Sakurai H.; Daiko T.; Hirao T.A Synthesis of Sumanene, a Fullerene Fragment.Science2003, 301, 1878. Google Scholar
- 3. Wu Y.-T.; Siegel J. S.Synthesis, Structures, and Physical Properties of Aromatic Molecular-Bowl Hydrocarbons.Top. Curr. Chem.2014, 349, 63–120. Google Scholar
- 4. Saito M.; Shinokubo H.; Sakurai H.Figuration of Bowl-Shaped π-Conjugated Molecules: Properties and Functions.Mater. Chem. Front.2018, 2, 635–661. Google Scholar
- 5. Nestoros E.; Stuparu M. C.Corannulene: A Molecular Bowl of Carbon with Multifaceted Properties and Diverse Applications.Chem. Commun.2018, 54, 6503–6519. Google Scholar
- 6. Stuparu M. C.Corannulene: A Curved Polyarene Building Block for the Construction of Functional Materials.Acc. Chem. Res.2021, 54, 2858–2870. Google Scholar
- 7. Shi K.; Lei T.; Wang X.-Y.; Wang J.-Y.; Pei J.A Bowl-Shaped Molecule for Organic Field-Effect Transistors: Crystal Engineering and Charge Transport Switching by Oxygen Doping.Chem. Sci.2014, 5, 1041–1045. Google Scholar
- 8. Chen R.; Lu R.-Q.; Shi K.; Wu F.; Fang H.-X.; Niu Z.-X.; Yan X.-Y.; Luo M.; Wang X.-C.; Yang C.-Y.; Wang X.-Y.; Xu B.; Xia H.; Pei J.; Cao X.-Y.Corannulene Derivatives with Low LUMO Levels and Dense Convex-Concave Packing for n-Channel Organic Field-Effect Transistors.Chem. Commun.2015, 51, 13768–13771. Google Scholar
- 9. Lu R.-Q.; Zhou Y.-N.; Yan X.-Y.; Shi K.; Zheng Y.-Q.; Luo M.; Wang X.-C.; Pei J.; Xia H.; Zoppi L.; Baldridge K. K.; Siegel J. S.; Cao X.-Y.Thiophene-Fused Bowl-Shaped Polycyclic Aromatics with a Dibenzo[a,g]corannulene Core for Organic Field-Effect Transistors.Chem. Commun.2015, 51, 1681–1684. Google Scholar
- 10. Gao G.; Chen M.; Roberts J.; Feng M.; Xiao C.; Zhang G.; Parkin S.; Risko C.; Zhang L.Rational Functionalization of a C70 Buckybowl to Enable a C70: Buckybowl Cocrystal for Organic Semiconductor Applications.J. Am. Chem. Soc.2020, 142, 2460–2470. Google Scholar
- 11. Sygula A.; Fronczek F. R.; Sygula R.; Rabideau P. W.; Olmstead M. M.A Double Concave Hydrocarbon Buckycatcher.J. Am. Chem. Soc.2007, 129, 3842–3843. Google Scholar
- 12. Fellows W. B.; Rice A. M.; Williams D. E.; Dolgopolova E. A.; Vannucci A. K.; Pellechia P. J.; Smith M. D.; Krause J. A.; Shustova N. B.Redox-Active Corannulene Buckybowls in a Crystalline Hybrid Scaffold.Angew. Chem. Int. Ed.2016, 55, 2195–2199. Google Scholar
- 13. Miyajima D.; Tashiro K.; Araoka F.; Takezoe H.; Kim J.; Kato K.; Takata M.; Aida T.Liquid Crystalline Corannulene Responsive to Electric Field.J. Am. Chem. Soc.2009, 131, 44–45. Google Scholar
- 14. Kang J.; Miyajima D.; Mori T.; Inoue Y.; Itoh Y.; Aida T.A Rational Strategy for the Realization of Chain-Growth Supramolecular Polymerization.Science2015, 347, 646–651. Google Scholar
- 15. Kawasumi K.; Zhang Q.; Segawa Y.; Scott L. T.; Itami K.A Grossly Warped Nanographene and the Consequences of Multiple Odd-Membered-Ring Defects.Nat. Chem.2013, 5, 739–744. Google Scholar
- 16. Shoyama K.; Würthner F.Synthesis of a Carbon Nanocone by Cascade Annulation.J. Am. Chem. Soc.2019, 141, 13008–13012. Google Scholar
- 17. Zhu Z.-Z.; Chen Z.-C.; Yao Y.-R.; Cui C.-H.; Li S.-H.; Zhao X.-J.; Zhang Q.; Tian H.-R.; Xu P.-Y.; Xie F.-F.; Xie X.-M.; Tan Y.-Z.; Deng S.-L.; Quimby J. M.; Scott L. T.; Xie S.-Y.; Huang R.-B.; Zheng L.-S.Rational Synthesis of an Atomically Precise Carboncone under Mild Conditions.Sci. Adv.2019, 5, eaaw0982. Google Scholar
- 18. Rabideau P. W.; Abdourazak A. H.; Folsom H. E.; Marcinow Z.; Sygula A.; Sygula R.Buckybowls: Synthesis and Ab Initio Calculated Structure of the First Semibuckminsterfullerene.J. Am. Chem. Soc.1994, 116, 7891–7892. Google Scholar
- 19. Scott L. T.; Bratcher M. S.; Hagen S.Synthesis and Characterization of a C36H12 Fullerene Subunit.J. Am. Chem. Soc.1996, 118, 8743–8744. Google Scholar
- 20. Scott L. T.; Jackson E. A.; Zhang Q.; Steinberg B. D.; Bancu M.; Li B.A Short, Rigid, Structurally Pure Carbon Nanotube by Stepwise Chemical Synthesis.J. Am. Chem. Soc.2012, 134, 107–110. Google Scholar
- 21. Wu T.-C.; Chen M.-K.; Lee Y.-W.; Kuo M.-Y.; Wu Y.-T.Bowl-Shaped Fragments of C70 or Higher Fullerenes: Synthesis, Structural Analysis, and Inversion Dynamics.Angew. Chem. Int. Ed.2013, 52, 1289–1293. Google Scholar
- 22. Wang Q.; Hu P.; Tanaka T.; Gopalakrishna T. Y.; Herng T. S.; Phan H.; Zeng W.; Ding J.; Osuka A.; Chi C.; Siegel J.; Wu J.Curved π-Conjugated Corannulene Dimer Diradicaloids, Chem. Sci.2018, 9, 5100–5105. Google Scholar
- 23. Halilovic D.; Rajeshkumar V.; Stuparu M. C.Synthesis and Properties of Bis-Corannulenes.Org. Lett.2021, 23, 1468–1472. Google Scholar
- 24. Li B.; Yang C.; Wang X.; Li G.; Peng W.; Xiao H.; Luo S.; Xie S.; Wu J.; Zeng Z.Synthesis and Structural Elucidation of Bisdibenzocorannulene in Multiple Redox States.Angew. Chem. Int. Ed.2021, 60, 19790–19796. Google Scholar
- 25. Stępień M.; Gońka E.; Żyła M.; Sprutta N.Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications.Chem. Rev.2017, 117, 3479–3716. Google Scholar
- 26. Borissov A.; Maurya Y. K.; Moshniaha L.; Wong W.-S.; Żyła-Karwowska M.; Stępień M.Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds.Chem. Rev.2022, 122, 565–788. Crossref, Google Scholar
- 27. Zhu G.; Song Y.; Zhang Q.; Ding W.; Chen X.; Wang Y.; Zhang G.Modulating the Properties of Buckybowls Containing Multiple Heteroatoms.Org. Chem. Front.2021, 8, 727–735. Google Scholar
- 28. Zhou L.; Zhang G.A Nanoboat with Fused Concave N-Heterotriangulene.Angew. Chem. Int. Ed.2020, 59, 8963–8968. Google Scholar
- 29. Song Y.; Zhang G.Effect of Fusion Manner of Concave Molecules on the Properties of Resulting Nanoboats.Org. Lett.2021, 23, 491–496. Google Scholar
- 30. Mishra S.; Krzeszewski M.; Pignedoli C. A.; Ruffieux P.; Fasel R.; Gryko D. T.On-Surface Synthesis of a Nitrogen-Embedded Buckybowl with Inverse Stone–Thrower–Wales Topology.Nat. Commun.2018, 9, 1714. Google Scholar
- 31. Krzeszewski M.; Dobrzycki Ł.; Sobolewski A. L.; Cyrański M. K.; Gryko D. T.Bowl-Shaped Pentagon- and Heptagon-Embedded Nanographene Containing a Central Pyrrolo[3,2-b]pyrrole Core.Angew. Chem. Int. Ed.2021, 60, 14998–15005. Google Scholar
- 32. Ito S.; Tokimaru Y.; Nozaki K.Benzene-Fused Azacorannulene Bearing an Internal Nitrogen Atom.Angew. Chem. Int. Ed.2015, 54, 7256–7260. Google Scholar
- 33. Tokimaru Y.; Ito S.; Nozaki K.A Hybrid of Corannulene and Azacorannulene: Synthesis of a Highly Curved Nitrogen-Containing Buckybowl.Angew. Chem. Int. Ed.2018, 57, 9818–9822. Google Scholar
- 34. Wang W.; Hanindita F.; Hamamoto Y.; Li Y.; Ito S.Fully Conjugated Azacorannulene Dimer as Large Diaza[80]fullerene Fragment.Nat. Commun.2022, 13, 1498. Google Scholar
- 35. Higashibayashi S.; Pandit P.; Haruki R.; Adachi S.-I.; Kumai R.Redox-Dependent Transformation of a Hydrazinobuckybowl between Curved and Planar Geometries.Angew. Chem. Int. Ed.2016, 55, 10830–10834. Google Scholar
- 36. Berger R.; Giannakopoulos A.; Ravat P.; Wagner M.; Beljonne D.; Feng X.; Müllen K.Synthesis of Nitrogen-Doped ZigZag-Edge Peripheries: Dibenzo-9a-azaphenalene as Repeating Unit.Angew. Chem. Int. Ed.2014, 53, 10520–10524. Google Scholar
- 37. Yin X.; Liu X.; Peng Y.; Zeng W.; Zhong C.; Xie G.; Wang L.; Fang J.; Yang C.Multichannel Strategies to Produce Stabilized Azaphenalene Diradicals: A Predictable Model to Generate Self-Doped Cathode Interfacial Layers for Organic Photovoltaics.Adv. Funct. Mater.2019, 29, 1806125. Google Scholar
- 38. Okuda Y.; Tsurumaki E.; Oh J.; Sung J.; Kim D.; Osuka A.A Directly Fused Subporphyrin Dimer with a Wavelike Structure.Angew. Chem. Int. Ed.2016, 55, 9212–9215. Google Scholar
- 39. Lebon F.; Longhi G.; Gangemi F.; Abbate S.; Priess J.; Juza M.; Bazzini C.; Caronna T.; Mele A.Chiroptical Properties of Some Monoazapentahelicenes.J. Phys. Chem. A2004, 108, 11752–11761. Google Scholar
- 40. Kos M.; Žádný J.; Storch J.; Církva V.; Cuřínová P.; Sýkora J.; Císařová I.; Kuriakose F.; Alabugin I. V.Oxidative Photocyclization of Aromatic Schiff Bases in Synthesis of Phenanthridines and Other Aza-PAHs.Int. J. Mol. Sci.2020, 21, 5868. Google Scholar
- 41. Beil S. B.; Franzmann P.; Müller T.; Hielscher M. M.; Prenzel T.; Pollok D.; Beiser N.; Schollmeyer D.; Waldvogel S. R.Investigations on Isomerization and Rearrangement of Polycyclic Arenes under Oxidative Conditions–Anodic versus Reagent-Mediated Reactions.Electrochimica Acta2018, 302, 310–315. Google Scholar
- 42. Saito H.; Uchida A.; Watanabe S.Synthesis of a Three-Bladed Propeller-Shaped Triple [5]Helicene.J. Org. Chem.2017, 82, 5663–5668. Google Scholar
- 43. Menon A., Dreyer J. A. H., Martin J. W., Akroyd J., Robertsonc J., Kraft M.Optical Band Gap of Cross-Linked, Curved, and Radical Polyaromatic Hydrocarbons.Phys. Chem. Chem. Phys.2019, 21, 16240. Google Scholar
- 44. Bard A. J.; Faulkner L. R.Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, 2001. Google Scholar
- 45. Tokimaru Y.; Ito S.; Nozaki K.Synthesis of Pyrrole-Fused Corannulenes: 1,3-Dipolar Cycloaddition of Azomethine Ylides to Corannulene.Angew. Chem. Int. Ed.2017, 56, 15560–15564. Google Scholar
- 46. Connelly N. G.; Geiger W. E.Chemical Redox Agents for Organometallic Chemistry.Chem. Rev.1996, 96, 877–910. Google Scholar