Dramatic Difference Between Cu20H8 and Cu20H9 Clusters in Catalysis
Sensitivity to structure and composition is very challenging to establish in nanocatalysis
due to inadequate definition of structures that are very close in composition. We
synthesized a pair of atomically precise copper clusters that are very close in composition,
[Cu20H9(Tf-dpf)10] · BF4 (
Introduction
Atomically precise metal clusters offer valuable opportunities to obtain fundamental insights into catalytic reactions.1–13 Copper hydride clusters are of great interest because of their potential applications in hydrogenation catalysis.14–20 Although a large number of atomically precise copper hydride clusters have been reported,21–33 their poor stability has limited their catalytic applications.34–36 Previously we have demonstrated that pyridyl-functionalized amidinates are promising candidates for the protection of stable copper hydride clusters.37–40 The flexible ligand containing four N-donors favors the structural transformation of copper hydride clusters, which is beneficial to their structural control in order to tune the catalytic activity of the clusters.
In the course of our attempt to establish the relationships between structures and
synthetic parameters of copper hydride clusters, we found that a very small change
in composition makes a big difference in structure and catalytic performance and that
even one hydride matters. Herein, we report a pair of copper hydride clusters, [Cu20H9(Tf-dpf)10] · BF4 (
Experimental Methods
We followed the procedure in the literature for the HTf-dpf ligand.40 All of the chemicals were obtained from commercial sources and used as received without further purification.
Synthesis of [Cu20H9(Tf-dpf)10] · BF4 (Cu20H9)
Excess Et3N (20 μL) was added to a 3 mL CH2Cl2/CH3OH (v:v = 2:1) solution containing HTf-dpf (0.1 mmol, 33.4 mg) and Cu(MeCN)4BF4 (63 mg, 0.2 mmol) under an ice bath. Then freshly prepared 2 mL MeOH solution of tBuNH2 · BH3 (0.2 mmol, 17.4 mg) was added dropwise to the above mixture. The color changed from yellow to orange and finally to red. The reaction continued for 4 h at 0 °C. Then the solvents were removed by rotary evaporation. The obtained product was washed with n-hexane (3 × 2 mL) and then dissolved in 3 mL CH2Cl2/CH3OH (v:v = 2:1). After centrifugation, the supernatant solution was divided into two parts, and each part was subjected to the diffusion of n-hexane at 4 °C to afford red crystals in a week with 57% yield (27.4 mg, based on Cu). Anal. UV–vis (λ, nm): 246; 262; 338. Electrospray ionization mass spectrometry (ESI-MS) (CH3CN): 4612.2 ([Cu20H9(Tf-dpf)10]+) and 2337.6 ([Cu21H9(Tf-dpf)10]2+).
Synthesis of [Cu20H8(Tf-dpf)10] · (BF4)2 (Cu20H8)
The synthesis of Cu20H8 was similar to that of Cu20H9. Excess Et3N (20 μL) was added to a 3 mL CH2Cl2/CH3OH (v:v = 2:1) solution containing HTf-dpf (0.1 mmol, 33.4 mg) and Cu(MeCN)4BF4 (47.5 mg, 0.15 mmol) at room temperature (30 °C). Then freshly prepared 2 mL MeOH solution of tBuNH2 · BH3 (0.08 mmol, 7.0 mg) was added dropwise to the above solution. The color changed from yellow to orange and finally to dark brown-green. The reaction continued for 4 h at room temperature (30 °C). The workup was also the same as that for Cu20H9. Block brown-green crystals were obtained at 4 °C within a week with a 78% yield (27.9 mg, based on Cu). Anal. UV–vis (λ, nm): 250; 271; 290; 570. ESI-MS (CH3CN): 2305.6 ([Cu20H8(Tf-dpf)10]2+).
Experimental procedure for cluster transformation from Cu20H9 to Cu20H8
The sample of
Catalytic reduction of α,β-unsaturated carbonyl compounds
2 mL ethanol was added to 1 mg
Results and Discussion
Synthesis and crystal structures
The compositions of these two clusters have been studied with ESI-MS (Figure 1a,b).
Figure 1 | ESI-MS of (a) Cu20H9 and (b) Cu20H8 in positive mode. Inset: the simulated (red) and experimental (black) isotropic patterns
of Cu20H9 and Cu20H8.
ESI-MS revealed that
The anatomy of the two Cu20 structures is shown in Figure 2a–h. The middle Cu12 units of
Figure 2 | Anatomy of two Cu20 clusters. The Cu12 kernel in Cu20H9 (a) and Cu20H8 (e); Cu12 + 2Cu4 in Cu20H9 (b) and Cu20H8 (f); the core + hydride structure in Cu20H9 (c) and Cu20H8 (g); molecular structures of Cu20H9 (d) and Cu20H8 (h). Color code: C, grey; F, bright green; hydride, red; N, dark blue; Cu, bright
blue and dark green.
The deep-learning prediction46,47 of hydride occupancies based on the heavy-atom positions (Figure 3a,b) coupled with DFT geometry optimization ( Supporting Information Figure S3) was able to verify the hydride positions.28,30,48 Given the refined SCXRD data and the deep-learning predictions, DFT-optimized structures
are in good agreement, confirming the positions of hydrides ( Supporting Information Figure S4). Nine hydride ligands in [
Figure 3 | Probability distribution of hydride occupation in possible locations as predicted
by convolutional neural network: (a) Cu20H9; (b) Cu20H8. Insets show the probabilities of the top-ranked hydride locations in the clusters.
Color legend: Cu, blue; hydride, white. The 1H NMR spectrum for Cu20H9 (c) and Cu20H8 (d) in acetonitrile-d3. The signals of hydrides are marked according to different coordination modes: μ4-H, green; μ5-H, yellow; and μ6-H, red.
In the [Cu20H8]12+ core of
Optical properties and time-dependent DFT simulations
The absorption spectra of these two clusters are shown in Figure 4a. Significantly different in their spectra, they demonstrate that a small change in
the composition makes a big difference in electronic structures.49,50
Figure 4 | (a) UV–visible absorption spectra of Cu20H9 (black) and Cu20H8 (red) in MeOH. Insets are the photo of the MeOH solution of Cu20H9 and Cu20H8, and enlarged absorption spectra in the range from 500 to 700 nm of Cu20H9 and Cu20H8; (b) TD-DFT-simulated UV–vis spectrum of the [Cu20H8(dpf)10]2+ model cluster in comparison with the experiment for Cu20H8. Inset: orbitals involved in the α transition of Cu20H8; Kohn-Sham molecular orbital energy levels diagram, the associated populations of
atomic orbitals in each KS molecular orbital, and frontier orbitals of HOMO and LUMO
states for [Cu20H9(dpf)10]+ (c) and [Cu20H8(dpf)10]2+ (d).
To understand the origin of the absorption spectra of these two Cu20 clusters, we performed time-dependent density functional theory (TD-DFT) calculations
( Supporting Information Figure S11). The simulated spectra agree well with the experiment for both
Transformation
Interestingly, we found that
Figure 5 | (a) Schematic diagram of the conversion from Cu20H9 to Cu20H8; (b) time-dependent UV–vis absorption spectra of Cu20H9 in MeOH at 30 °C under N2; (c) photographs of the Cu20H9 before and after the transformation in methanol.
Catalytic properties
Since these two closely related Cu20 clusters show distinctly different electronic structures and stability, we were interested in exploring their structure-property correlation in terms of catalytic hydrogenation reactions. We explored the catalytic activity of these two Cu20 clusters in the conjugate reduction of cinnamaldehyde, which have been used extensively to evaluate copper hydride catalysts.53,54
To our surprise,
Figure 6 | (a) Selective catalytic reduction of cinnamaldehyde. aThe selectivity and conversion were determined by NMR analysis; (b) the ESI-MS of
used Cu20H8 in positive mode. Inset: the simulated (red) and experimental (black) and isotropic
patterns of after-catalytic Cu20H8; DFT structures and energetics of one Tf-dpf− ligand (highlighted in blue) dissociating from Cu20H9 (c) or Cu20H8 (d).
To investigate the cause of the different catalytic performance, we separated the
cluster species from the solution after catalysis. The reaction mixture was evaporated
to dry, and organic species were washed away by dichloromethane (DCM) to obtain the
solid of used cluster catalysts due to their poor solubility in DCM. It should be
noted that
The compositions of two used cluster catalysts have been studied with ESI-MS. The
used
These results indicate that a ligand dissociation process occurred in the reduction
reaction catalyzed by
Conclusion
In summary, we have isolated a pair of copper hydride clusters,
Supporting Information
Supporting Information is available and includes the experimental instruments and computational details, DFT calculation results, crystallographic information, and characterizations. The X-ray crystallographic coordinates for structures reported in this article (see Supporting Information Table S1) have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers 2169810 and 2169811. These data can be obtained free of charge from the CCDC via http://www.ccdc.cam.ac.uk/data_request/cif
Conflict of Interest
There is no conflict of interest to report.
Funding Information
This work was financially supported by the National Natural Science Foundation of China (grant nos. 91961201 and 21973116). F.H. acknowledges financial support from the Beijing Natural Science Foundation (grant no. 2234087) and the China Postdoctoral Science Foundation (grant nos. 2023T160357 and 2022M721797).
References
- 1. Li G.; Jin R.Atomically Precise Gold Nanoclusters as New Model Catalysts.Acc. Chem. Res.2013, 46, 1749–1758. Google Scholar
- 2. Jin R.; Zeng C.; Zhou M.; Chen Y.Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities.Chem. Rev.2016, 116, 10346–10413. Google Scholar
- 3. Liu L.; Corma A.Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles.Chem. Rev.2018, 118, 4981–5079. Google Scholar
- 4. Du Y.; Sheng H.; Astruc D.; Zhu M.Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge Between Structure and Properties.Chem. Rev.2020, 120, 526–622. Google Scholar
- 5. Sun C.; Teo B. K.; Deng C.; Lin J.; Luo G.-G.; Tung C.-H.; Sun D.Hydrido-Coinage-Metal Clusters: Rational Design, Synthetic Protocols and Structural Characteristics.Coord. Chem. Rev.2021, 427, 213576. Google Scholar
- 6. Guan Z. J.; Li J. J.; Hu F.; Wang Q. M.Structural Engineering Toward Gold Nanocluster Catalysis.Angew. Chem. Int. Ed.2022, 61, e202209725. Google Scholar
- 7. Yuan S. F.; Lei Z.; Guan Z. J.; Wang Q. M.Atomically Precise Preorganization of Open Metal Sites on Gold Nanoclusters with High Catalytic Performance.Angew. Chem. Int. Ed.2021, 60, 5225–5229. Google Scholar
- 8. Zhu Y.; Qian H.; Drake B. A.; Jin R.Atomically Precise Au25(SR)18 Nanoparticles as Catalysts for the Selective Hydrogenation of α,β-Unsaturated Ketones and Aldehydes.Angew. Chem. Int. Ed.2010, 49, 1295–1298. Google Scholar
- 9. Muetterties E. L.; Rhodin T. N.; Band E.; Brucker C. F.; Pretzer W. R.Clusters and Surfaces.Chem. Rev.1979, 79, 91–137. Google Scholar
- 10. Shima T.; Luo Y.; Stewart T.; Bau R.; McIntyre G. J.; Mason S. A.; Hou Z.Molecular Heterometallic Hydride Clusters Composed of Rare-Earth and d-Transition Metals.Nat. Chem.2011, 3, 814–820. Google Scholar
- 11. Ephritikhine M.Synthesis, Structure, and Reactions of Hydride, Borohydride, and Aluminohydride Compounds of the f-Elements.Chem. Rev.1997, 97, 2193–2242. Google Scholar
- 12. Inkrott K. E.; Shore G. S.Stepwise Deprotonation of H4Ru4(CO)12: High-Yield Synthesis and Carbon-13 NMR Spectra of H3Ru4(CO)12- and H2Ru4(CO)122-.Inorg. Chem.1979, 18, 2817–2821. Google Scholar
- 13. Brayshaw S. K.; Ingleson M. J.; Green J. C.; McIndoe J. S.; Raithby P. R.; Kociok-Köhn G.; Weller A. S.High Hydride Count Rhodium Octahedra, [Rh6(PR3)6H12][BArF4]2: Synthesis, Structures, and Reversible Hydrogen Uptake under Mild Conditions.J. Am. Chem. Soc.2006, 128, 6247–6263. Google Scholar
- 14. Lemmen T. H.; Foiling K.; Huffman J. C.; Caulton K. G.Copper Polyhydrides.J. Am. Chem. Soc.1985, 107, 7774–7775. Google Scholar
- 15. Deutsch C.; Krause N.CuH-Catalyzed Reactions.Chem. Rev.2008, 108, 2916–2927. Google Scholar
- 16. Gawande M. B.; Goswami A.; Felpin F. X.; Asefa T.; Huang X.; Silva R.; Zou X.; Zboril R.; Varma R. S.Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis.Chem. Rev.2016, 116, 3722–3811. Google Scholar
- 17. Jordan A. J.; Lalic G.; Sadighi J. P.Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity.Chem. Rev.2016, 116, 8318–8372. Google Scholar
- 18. Liu X.; Astruc D.Atomically Precise Copper Nanoclusters and Their Applications.Coord. Chem. Rev.2018, 359, 112–126. Google Scholar
- 19. Sagadevan A.; Ghosh A.; Maity P.; Mohammed O. F.; Bakr O. M.; Rueping M.Visible-Light Copper Nanocluster Catalysis for the C-N Coupling of Aryl Chlorides at Room Temperature.J. Am. Chem. Soc.2022, 144, 12052–12061. Google Scholar
- 20. Jiao J.; Lin R.; Liu S.; Cheong W. C.; Zhang C.; Chen Z.; Pan Y.; Tang J.; Wu K.; Hung S. F.; Chen H. M.; Zheng L.; Lu Q.; Yang X.; Xu B.; Xiao H.; Li J.; Wang D.; Peng Q.; Chen C.; Li Y.Copper Atom-Pair Catalyst Anchored on Alloy Nanowires for Selective and Efficient Electrochemical Reduction of CO2.Nat. Chem.2019, 11, 222–228. Google Scholar
- 21. Dhayal R. S.; van Zyl W. E.; Liu C. W.Polyhydrido Copper Clusters: Synthetic Advances, Structural Diversity, and Nanocluster-to-Nanoparticle Conversion.Acc. Chem. Res.2016, 49, 86–95. Google Scholar
- 22. Ghosh A.; Huang R.-W.; Alamer B.; Abou-Hamad E.; Hedhili M. N.; Mohammed O. F.; Bakr O. M.[Cu61(StBu)26S6Cl6H14]+: A Core-Shell Superatom Nanocluster with a Quasi-J36 Cu19 Core and an “18-Crown-6" Metal-Sulfide-like Stabilizing Belt.ACS Mater. Lett.2019, 1, 297–302. Google Scholar
- 23. Huang R.-W.; Yin J.; Dong C.; Maity P.; Hedhili M. N.; Nematulloev S.; Alamer B.; Ghosh A.; Mohammed O. F.; Bakr O. M.[Cu23(PhSe)16(Ph3P)8(H)6] · BF4: Atomic-Level Insights into Cuboidal Polyhydrido Copper Nanoclusters and Their Quasi-Simple Cubic Self-Assembly.ACS Mater. Lett.2020, 3, 90–99. Google Scholar
- 24. Chakrahari K. K.; Liao J. H.; Kahlal S.; Liu Y. C.; Chiang M. H.; Saillard J. Y.; Liu C. W.[Cu13{S2CNnBu2}6 (acetylide)4]+: A Two-Electron Superatom.Angew. Chem. Int. Ed.2016, 55, 14704–14708. Google Scholar
- 25. Chakrahari K. K.; Silalahi R. P. B.; Chiu T. H.; Wang X.; Azrou N.; Kahlal S.; Liu Y. C.; Chiang M. H.; Saillard J. Y.; Liu C. W.Synthesis of Bimetallic Copper-Rich Nanoclusters Encapsulating a Linear Palladium Dihydride Unit.Angew. Chem. Int. Ed.2019, 58, 4943–4947. Google Scholar
- 26. Dhayal R. S.; Liao J. H.; Wang X.; Liu Y. C.; Chiang M. H.; Kahlal S.; Saillard J. Y.; Liu C. W.Diselenophosphate-Induced Conversion of an Achiral [Cu20H11{S2P(OiPr)2}9] into a Chiral [Cu20H11{Se2P(OiPr)2}9] Polyhydrido Nanocluster.Angew. Chem. Int. Ed.2015, 54, 13604–13608. Google Scholar
- 27. Edwards A. J.; Dhayal R. S.; Liao P. K.; Liao J. H.; Chiang M. H.; Piltz R. O.; Kahlal S.; Saillard J. Y.; Liu C. W.Chinese Puzzle Molecule: A 15 Hydride, 28 Copper Atom Nanoball.Angew. Chem. Int. Ed.2014, 53, 7214–7218. Google Scholar
- 28. Nakamae K.; Nakajima T.; Ura Y.; Kitagawa Y.; Tanase T.Facially Dispersed Polyhydride Cu9 and Cu16 Clusters Comprising Apex-Truncated Supertetrahedral and Square-Face-Capped Cuboctahedral Copper Frameworks.Angew. Chem. Int. Ed.2020, 59, 2262–2267. Google Scholar
- 29. Yuan P.; Chen R.; Zhang X.; Chen F.; Yan J.; Sun C.; Ou D.; Peng J.; Lin S.; Tang Z.; Teo B. K.; Zheng L. S.; Zheng N.Ether-Soluble Cu53 Nanoclusters as an Effective Precursor of High-Quality CuI Films for Optoelectronic Applications.Angew. Chem. Int. Ed.2019, 58, 835–839. Google Scholar
- 30. Lee S.; Bootharaju M. S.; Deng G.; Malola S.; Baek W.; Hakkinen H.; Zheng N.; Hyeon T.[Cu32(PET)24H8Cl2](PPh4)2: A Copper Hydride Nanocluster with a Bisquare Antiprismatic Core.J. Am. Chem. Soc.2020, 142, 13974–13981. Google Scholar
- 31. Zhan S. Z.; Zhang G. H.; Li J. H.; Liu J. L.; Zhu S. H.; Lu W.; Zheng J.; Ng S. W.; Li D.Exohedral Cuprofullerene: Sequentially Expanding Metal Olefin Up to a C60@Cu24 Rhombicuboctahedron.J. Am. Chem. Soc.2020, 142, 5943–5947. Google Scholar
- 32. Dong C.; Huang R.-W.; Chen C.; Chen J.; Nematulloev S.; Guo X.; Ghosh A.; Alamer B.; Hedhili M. N.; Isimjan T. T.; Han Y.; Mohammed O. F.; Bakr O. M.[Cu36H10(PET)24(PPh3)6Cl2] Reveals Surface Vacancy Defects in Ligand-Stabilized Metal Nanoclusters.J. Am. Chem. Soc.2021, 143, 11026–11035. Google Scholar
- 33. Guo Q. L.; Han B. L.; Sun C. F.; Wang Z.; Tao Y.; Lin J. Q.; Luo G. G.; Tung C. H.; Sun D.Observation of a bcc-like Framework in Polyhydrido Copper Nanoclusters.Nanoscale2021, 13, 19642–19649. Google Scholar
- 34. Barik S. K.; Huo S. C.; Wu C. Y.; Chiu T. H.; Liao J. H.; Wang X.; Kahlal S.; Saillard J. Y.; Liu C. W.Polyhydrido Copper Nanoclusters with a Hollow Icosahedral Core: [Cu30H18{E2P(OR)2}12] (E=S or Se; R=nPr, iPr or iBu).Chem. Eur. J.2020, 26, 10471–10479. Google Scholar
- 35. Dhayal R. S.; Liao J. H.; Lin Y. R.; Liao P. K.; Kahlal S.; Saillard J. Y.; Liu C. W.A Nanospheric Polyhydrido Copper Cluster of Elongated Triangular Orthobicupola Array: Liberation of H2 from Solar Energy.J. Am. Chem. Soc.2013, 135, 4704–4707. Google Scholar
- 36. Chakrahari K. K.; Liao J.; Silalahi R. P. B.; Chiu T. H.; Liao J. H.; Wang X.; Kahlal S.; Saillard J. Y.; Liu C. W.Isolation and Structural Elucidation of 15-Nuclear Copper Dihydride Clusters: An Intermediate in the Formation of a Two-Electron Copper Superatom.Small2021, 17, e2002544. Google Scholar
- 37. Yuan S. F.; Liu W. D.; Liu C. Y.; Guan Z. J.; Wang Q. M.Nitrogen Donor Protection for Atomically Precise Metal Nanoclusters.Chem. Eur. J.2022, 28, e202104445. Google Scholar
- 38. Hu F.; Luyang H. W.; He R. L.; Guan Z. J.; Yuan S. F.; Wang Q. M.Face-Centered Cubic Silver Nanoclusters Consolidated with Tetradentate Formamidinate Ligands.J. Am. Chem. Soc.2022, 144, 19365–19371. Google Scholar
- 39. Komber H.; Limbach H. H.; Bohme F.; Kunert C.NMR Studies of the Tautomerism of Cyclo-tris(4-R-2,6-pyridylformamidine) in Solution and in the Solid State.J. Am. Chem. Soc.2002, 124, 11955–11963. Google Scholar
- 40. Liu C. Y.; Yuan S. F.; Wang S.; Guan Z. J.; Jiang D. E.; Wang Q. M.Structural Transformation and Catalytic Hydrogenation Activity of Amidinate-Protected Copper Hydride Clusters.Nat. Commun.2022, 13, 2082. Google Scholar
- 41. Guan Z. J.; He R. L.; Yuan S. F.; Li J. J.; Hu F.; Liu C. Y.; Wang Q. M.Ligand Engineering Toward the Trade-Off Between Stability and Activity in Cluster Catalysis.Angew. Chem. Int. Ed.2022, 61, e202116965. Google Scholar
- 42. Wan X.-K.; Wang J.-Q.; Nan Z.-A.; Wang Q.-M.Ligand Effects in Catalysis by Atomically Precise Gold Nanoclusters.Sci. Adv.2017, 3, 1701823. Google Scholar
- 43. Guan Z. J.; Hu F.; Yuan S. F.; Nan Z. A.; Lin Y. M.; Wang Q. M.The Stability Enhancement Factor Beyond Eight-Electron Shell Closure in Thiacalix[4]arene-Protected Silver Clusters.Chem. Sci.2019, 10, 3360–3365. Google Scholar
- 44. Yuan S. F.; Guan Z. J.; Liu W. D.; Wang Q. M.Solvent-Triggered Reversible Interconversion of All-Nitrogen-Donor-Protected Silver Nanoclusters and Their Responsive Optical Properties.Nat. Commun.2019, 10, 4032. Google Scholar
- 45. Liu P.; Hensen E. J.Highly Efficient and Robust Au/MgCuCr2O4 Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde.J. Am. Chem. Soc.2013, 135, 14032–14035. Google Scholar
- 46. Wang S.; Wu Z.; Dai S.; Jiang D. E.Deep Learning Accelerated Determination of Hydride Locations in Metal Nanoclusters.Angew. Chem. Int. Ed.2021, 60, 12289–12292. Google Scholar
- 47. Wang S.; Liu T.; Jiang D. E.Locating Hydrides in Ligand-Protected Copper Nanoclusters by Deep Learning.ACS Appl. Mater. Interfaces2021, 13, 53468–53474. Google Scholar
- 48. Sun C.; Mammen N.; Kaappa S.; Yuan P.; Deng G.; Zhao C.; Yan J.; Malola S.; Honkala K.; Hakkinen H.; Teo B. K.; Zheng N.Atomically Precise, Thiolated Copper-Hydride Nanoclusters as Single-Site Hydrogenation Catalysts for Ketones in Mild Conditions.ACS Nano2019, 13, 5975–5986. Google Scholar
- 49. Zhang C.; Wang Z.; Si W. D.; Wang L.; Dou J. M.; Gao Z. Y.; Tung C. H.; Sun D.Solvent-Induced Isomeric Cu13 Nanoclusters: Chlorine to Copper Charge Transfer Boosting Molecular Oxygen Activation in Sulfide Selective Oxidation.ACS Nano2022, 16, 9598–9607. Google Scholar
- 50. Guan Z. J.; Zeng J. L.; Nan Z. A.; Wan X. K.; Lin Y. M.; Wang Q. M.Thiacalix[4]arene: New Protection for Metal Nanoclusters.Sci. Adv.2016, 2, e1600323. Google Scholar
- 51. Xu G. T.; Wu L. L.; Chang X. Y.; Ang T. W. H.; Wong W. Y.; Huang J. S.; Che C. M.Solvent-Induced Cluster-to-Cluster Transformation of Homoleptic Gold(I) Thiolates Between Catenane and Ring-in-Ring Structures.Angew. Chem. Int. Ed.2019, 58, 16297–16306. Google Scholar
- 52. Qin Z.; Zhang J.; Wan C.; Liu S.; Abroshan H.; Jin R.; Li G.Atomically Precise Nanoclusters with Reversible Isomeric Transformation for Rotary Nanomotors.Nat. Commun.2020, 11, 6019. Google Scholar
- 53. Xu G.; Leloux S.; Zhang P.; Meijide Suarez J.; Zhang Y.; Derat E.; Menand M.; Bistri-Aslanoff O.; Roland S.; Leyssens T.; Riant O.; Sollogoub M.Capturing the Monomeric (L)CuH in NHC-Capped Cyclodextrin: Cavity-Controlled Chemoselective Hydrosilylation of alpha, beta-Unsaturated Ketones.Angew. Chem. Int. Ed.2020, 59, 7591–7597. Google Scholar
- 54. Yuan S. F.; Luyang H. W.; Lei Z.; Wan X. K.; Li J. J.; Wang Q. M.A Stable Well-Defined Copper Hydride Cluster Consolidated with Hemilabile Phosphines.Chem. Commun.2021, 57, 4315–4318. Google Scholar
- 55. Wang Y.-M.; Buchwald S. L.Enantioselective CuH-Catalyzed Hydroallylation of Vinylarenes.J. Am. Chem. Soc.2016, 138, 5024–5027. Google Scholar