Intermolecular Crosslinking of Phenols and Alkyl Amines with Formaldehyde in Hexafluoroisopropanol (HFIP) for Conjugation: A Multipartner Bridging Model for HFIP Promotion
Crosslinking different biorelevant molecules (BMs) through their endogenous nucleophilic groups in one step could provide streamlined methods for their conjugation. Previously, we discovered that the phenol side chain of tyrosine and the amino side chain of lysine in peptides can be intramolecularly crosslinked via a methylene linker using a simple formaldehyde (HCHO) reagent in hexafluoroisopropanol (HFIP) solvent. Herein, we report that HCHO-mediated crosslinking between various phenols and alkyl amines could proceed intermolecularly in HFIP under mild conditions. This new protocol offers a simple, versatile, and robust method for crosslinking various BMs with a small-footprint linker and high atom economy. Unlike previous HFIP activation models that involve interactions with only one reaction partner, we propose that HFIP aggregates act as versatile bridging templates, bringing together two reaction partners through combinations of weak bonding interactions such as H-bonding, cation-dipole, and C–H/π interactions, in a multipartner activation mode.
Introduction
Conjugation chemistry plays a key role in developing modern biopharmaceuticals and biochemical probes such as peptide/antibody-drug conjugates, proteolysis targeting chimera (PROTAC), and advanced imaging agents.1–3 Despite significant progress, there is still a high demand for broadly applicable and user-friendly conjugation methods.4–20 Biorelevant molecules (BMs), such as peptides and small-molecule drugs, primarily display nucleophilic groups (-NH, -OH, and, to a lesser extent, -SH) on their surfaces, which can react with various electrophilic reagents for conjugation. However, crosslinking two native BMs typically requires specially designed bifunctional linkers bearing two different electrophilic groups to necessitate a two-step installation procedure. The ability to directly crosslink two different BMs through their endogenous nucleophilic handles in one step could significantly streamline the conjugation process (Scheme 1a).21–31 The Betti reaction, a special case of the Mannich reaction, can crosslink phenol and amino groups via a methylene linker between carbon and nitrogen atoms (C/N) using a simple formaldehyde (HCHO) reagent.32–34 HCHO-mediated crosslinking of various nucleophiles occurs naturally in living systems; however, these processes usually proceed with moderate reactivity and high promiscuity.35–44 Notably, Francis and coworkers45,46 reported a bioconjugation protocol for labeling the phenol group of tyrosine (Tyr) residues in proteins with HCHO and electron-enriched arylamine reagents under near-physiological conditions (Scheme 1b). However, this reaction exhibited moderate efficiency and required a large excess of HCHO and aryl amine reagents to achieve good conversions. Interestingly, alkyl amines showed little reactivity in the labeling reaction. Recently, we discovered that the HCHO-mediated intramolecular C/N crosslinking between the Tyr and the alkyl amine side chain of lysine (Lys) could proceed efficiently and selectively at room temperature (rt) in hexafluoroisopropanol (HFIP) solvent.47 This method enabled the stapling of native peptides with a small footprint methylene linker and high atom economy (Scheme 1c).48–51 Herein, we report that the HCHO-mediated intermolecular C/N methylene crosslinking between various phenols and alkyl amines could proceed smoothly in HFIP solvent under mild conditions (Scheme 1d). This new protocol offers a simple, versatile, and robust method for crosslinking various BMs such as peptides, small molecule drugs, and fluorophores through their endogenous phenol and amine moieties.51–74 Mechanistically, we propose that HFIP aggregates act as self-assembled bridges for bringing together two reaction partners, promoting the intermolecular reaction in a pseudo-intramolecular fashion through a multipartner activation mode.75–96
Experimental Methods
All commercial materials were used as received unless otherwise noted. Flash chromatography was performed using Silica gel (200–300 mesh) purchased from Qingdao Haiyang Chemical Co., Ltd. (Shandong, China) Fmoc-protected amino acids and coupling reagents N,N’-diisopropylcarbodiimide (DIC) and ethyl (hydroxyimino)cyanoacetate (Oxyma) were purchased from Shanghai Haohong Scientific Co. Ltd. (Shanghai, China). Rink amide MBHA (MBHA: bmethylbenzhydryl amine) resin (0.634 mmol/g) was purchased from GL Biochem (Shanghai, China). HFIP solvent (99.5%, Energy Chemical Co. Ltd., Shanghai, China), N,N-diisopropylethylamine (DIPEA; 99.5%; Energy Chemical), and HCHO (37% wt % in H2O; Energy Chemical) were used in the intermolecular crosslinking of phenols and alkyl amines with HCHO. Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analyses were performed with a Dionex UltiMate 3000 connected to a Thermo Scientific MSQ PLUS mass spectrometer using Thermo Scientific Hypersil GOLD C18 (1.9 μm, 2.1 × 100 mm) (Thermo Fisher Scientific, Waltham, Massachusetts, USA) or Agilent TC-C18 (5 μm, 4.6 × 250 mm) (Agilent Technologies Inc., Santa Clara, California, USA). Linear gradients using A: H2O (0.1% HCOOH) and B: MeCN (0.1% HCOOH) over varying periods. High-resolution mass spectra (HRMS) were recorded on a Thermo Q Exactive Focus (Thermo Fisher Scientific, Waltham, Massachusetts, USA) using electrospray ionization (ESI). Semi-preparative high-performance liquid chromatography (HPLC) was carried out on a Dionex UltiMate 3000 using a Thermo Scientific Hypersil GOLD C18 (5 μm, 21.2 × 150 mm) preparative column (Thermo Fisher Scientific, Waltham, Massachusetts, USA). Nuclear magnetic resonance (NMR) spectra were recorded on Bruker AVANCE AV 400 instruments (Bruker, Billerica, Massachusetts, USA) and all NMR experiments were reported in units, parts per million (ppm), using residual solvent peaks (chloroform (δ = 7.26 ppm) or TMS (δ = 0.00 ppm) for 1H NMR, chloroform (δ = 77.16 ppm) for 13C NMR) as the internal reference. Multiplicities are recorded as follows: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, td = triplet of doublets, br s = broad singlet, m = multiplet. UV–vis spectra were recorded on a Cary 100 spectrophotometer (Agilent Technologies Inc., Santa Clara, California, USA). Steady-state fluorescence measurements were recorded on a Cary Eclipse fluorescence spectrometer (Agilent Technologies Inc., Santa Clara, California, USA).
Results and Discussion
As shown in Scheme 2a, our investigation commenced with the crosslinking of the model tetrapeptide
As shown in Scheme 2b, model peptide
As outlined in Scheme 3a, the HCHO-mediated intermolecular phenol/amine crosslinking reaction was utilized
to attach various alkyl amines onto the Tyr side chain of short peptides. For example,
the reaction of tetrapeptide NA-Leu-Gly-Tyr-Ala-NH2
As shown in Scheme 4a, the HCHO-mediated phenol/amine crosslinking method can be applied to construct various
complex molecular structures. For instance, linear peptide
In our previous report on the HCHO-mediated intramolecular Tyr-Lys stapling, the role of the HFIP solvent was not addressed in detail, as we attributed the reactivity primarily to the proximity effect in the intramolecular setting.47 However, the high reactivity observed in the present intermolecular variant suggests that HFIP played a crucial role in promoting the electrophilic aromatic substitution reaction of phenols with formaldimines or formaldiminium ions. HFIP (pKa = 9.3) had an acidic OH group comparable to phenol (pKa = 10.0) and strong H-bonding ability. Notably, HFIP can readily form aggregates, typically comprising up to 4 or 5 units, which exhibited further enhanced H-bonding capabilities (Scheme 5a).94 The H-bonding interaction with HFIP, usually involving only one of the reaction partners, has been invoked for HFIP’s promoting effect in previous studies.94–96 In a recent discovery, we found that HFIP could promote an unusual intermolecular hydride transfer from alkyl amines to formaldimines or HCHO under mild conditions.49 Mechanistic studies suggested that HFIP aggregates acted as self-assembled bridges, bringing together both alkyl amines and formaldimines through H-bond interactions. This arrangement allowed the intermolecular hydride transfer reaction to proceed in a pseudo-intramolecular fashion via a macrocyclic transition state with a significantly lowered energy barrier. Compared with the previous “single-partner” solvent promotion models, we proposed that HFIP aggregates facilitate the hydride transfer reaction via a “dual-partner” promotion model through a network of H-bonds.
In addition to H-bonding, recent studies have shown that other types of weak interactions
could also contribute to the reaction-promoting effect of HFIP (Scheme 5a). For instance, Qu’s recent study indicated that HFIP stabilized various cationic
species through its C–F bonds via dipole/cation interactions.92 Lu and Hua89 and Lu’s group90,91 independently demonstrated that the tertiary C–H bond of HFIP can bind arene substrates
via C–H/π interactions. Based on these studies, our prior investigations, and other
literature reports, we propose that HFIP aggregates can act as versatile bridging
templates, bringing together two reaction partners through various combinations of
weak bonding interactions. Figuratively, the HFIP molecule was viewed as a “bird-shaped
magnetic block” featuring an O–H head, a pair of CF3 wings, and a C–H foot (Scheme 5a). The sticky OH heads were readily connected via H-bonds to form the backbone of
aggregates with varied lengths and shapes. While H-bonding likely provided the most
dominant means for binding one of the reaction partners (e.g.,
As outlined in Scheme 5b, conventional mechanistic models for the Betti reaction (see
Conclusion
In summary, we have developed an efficient protocol for the intermolecular Betti reaction of phenols, alkyl amines, and HCHO under mild conditions. The new protocol provides a simple and powerful method for crosslinking two native BMs such as peptides, small molecule drugs, and fluorophores, through their endogenous phenol and amine handles. The HFIP solvent is critical for achieving high intermolecular reactivity. Unlike previous HFIP activation models that involve interactions with only one reaction partner, we propose that HFIP aggregates act as versatile bridging templates, bringing together two reaction partners through combinations of weak bonding interactions in a multipartner activation mode. We anticipate that this crosslinking method will find broad application in conjugation processes and that the bridging solvent activation model can be extended to other reaction systems featuring unusual reactivity enhancements by HFIP solvent.
Supporting Information
Supporting Information is available and free of charge at CCS Chemistry; it includes synthetic procedures, additional control experiments, compound characterization, LC-MS trace, and NMR spectra.
Conflict of Interest
There is no conflict of interest to report.
Funding Information
G.C. thanks the following institutions for financial support of this work: the National Key R&D Programme of China (grant no. 2022YFA1504303), the National Natural Science Foundation of China (grant nos. 92256302 and 22221002), Frontiers Science Center for New Organic Matter, China (grant no. 63181206), and Haihe Laboratory of Sustainable Chemical Transformations, China.
References
- 1. Krall N.; da Cruz F. P.; Boutureira O.; Bernardes G. J. L.Site-Selective Protein-Modification Chemistry for Basic Biology and Drug Development.Nat. Chem.2016, 8, 103–113. Google Scholar
- 2. Cooper B. M.; Iegre J.; O’ Donovan D. H.; Halvarsson M. O.; Spring D. R.Peptides as a Platform for Targeted Therapeutics for Cancer: Peptide–Drug Conjugates (PDCs).Chem. Soc. Rev.2021, 50, 1480–1494. Google Scholar
- 3. Alas M.; Saghaeidehkordi A.; Kaur K.Peptide–Drug Conjugates with Different Linkers for Cancer Therapy.J. Med. Chem.2021, 64, 216–232. Google Scholar
- 4. Stephanopoulos N.; Francis M. B.Choosing an Effective Protein Bioconjugation Strategy.Nat. Chem. Biol.2011, 7, 876–884. Google Scholar
- 5. McKay C. S.; Finn M. G.Click Chemistry in Complex Mixtures: Bioorthogonal Bioconjugation.Chem. Biol.2014, 21, 1075–1101. Google Scholar
- 6. Spicer C. D.; Davis B. G.Selective Chemical Protein Modification.Nat. Commun.2014, 5, 4740–4754. Google Scholar
- 7. Koniev O.; Wagner A.Developments and Recent Advancements in the Field of Endogenous Amino Acid Selective Bond Forming Reactions for Bioconjugation.Chem. Soc. Rev.2015, 44, 5495–5551. Google Scholar
- 8. Lau Y. H.; de Andrade P.; Wu Y.; Spring D. R.Peptide Stapling Techniques Based on Different Macrocyclisation Chemistries.Chem. Soc. Rev.2015, 44, 91–102. Google Scholar
- 9. Chen X.; Wu Y. W.Selective Chemical Labeling of Proteins.Org. Biomol. Chem.2016, 14, 5417–5439. Google Scholar
- 10. Hu Q. Y.; Berti F.; Adamo R.Towards the Next Generation of Biomedicines by Site-Selective Conjugation.Chem. Soc. Rev.2016, 45, 1691–1719. Google Scholar
- 11. deGruyter J. N.; Malins L. R.; Baran P. S.Residue-Specific Peptide Modification: A Chemist’s Guide.Biochemistry2017, 56, 3853–3873. Google Scholar
- 12. Rosen C. B.; Francis M. B.Targeting the N Terminus for Site-Selective Protein Modification.Nat. Chem. Biol.2017, 13, 697–705. Google Scholar
- 13. Derda R.; Jafari M. R.Synthetic Cross-Linking of Peptides: Molecular Linchpins for Peptide Cyclization.Protein Pept. Lett.2018, 25, 1051–1075. Google Scholar
- 14. Tamura T.; Hamachi I.Chemistry for Covalent Modification of Endogenous/Native Proteins: from Test Tubes to Complex Biological Systems.J. Am. Chem. Soc.2019, 141, 2782–2799. Google Scholar
- 15. Hoyt E. A.; Cal P. M. S. D.; Oliveira B. L.; Bernardes G. J. L.Contemporary Approaches to Site-Selective Protein Modification.Nat. Rev. Chem.2019, 3, 147–171. Google Scholar
- 16. Isenegger P. G.; Davis B. G.Concepts of Catalysis in Site-Selective Protein Modifications.J. Am. Chem. Soc.2019, 141, 8005–8013. Google Scholar
- 17. Rawale D. G.; Thakur K.; Adusumalli S. R.; Rai V.Chemical Methods for Selective Labeling of Proteins.Eur. J. Org. Chem.2019, 40, 6749–6763. Google Scholar
- 18. Tong H. R.; Li B.; Li G.; He G.; Chen G.Postassembly Modifications of Peptides via Metal-Catalyzed C–H Functionalization.CCS Chem.2020, 2, 1797–1820. Google Scholar
- 19. Xu L.; Kuan S. L.; Weil T.Contemporary Approaches for Site-Selective Dual Functionalization of Proteins, Contemporary Approaches for Site-Selective Dual Functionalization of Proteins.Angew. Chem. Int. Ed.2021, 60, 13757–13777. Google Scholar
- 20. Dong S.; Zheng J. S.; Li Y.; Wang H.; Chen G.; Chen Y.; Fang G.; Guo J.; He C.; Hu H.; Li X.; Li Y.; Li Z.; Pan M.; Tang S.; Tian C.; Wang P.; Wu B.; Wu C.; Zhao J.; Liu L.Recent Advances in Chemical Protein Synthesis: Method Developments and Biological Applications.Sci. China Chem.2024, 67, 1060–1096. Crossref, Google Scholar
- 21. Zhang Y.; Zhang Q.; Wong C. T. T.; Li X.Chemoselective Peptide Cyclization and Bicyclization Directly on Unprotected Peptides.J. Am. Chem. Soc.2019, 141, 12274–12279. Google Scholar
- 22. Todorovic M.; Schwab K. D.; Zeisler J.; Zhang C.; Benard F., Perrin D. M.Fluorescent Isoindole Crosslink (FlICk) Chemistry: A Rapid, User-Friendly Stapling Reaction.Angew. Chem. Int. Ed.2019, 58, 14120–14124. Google Scholar
- 23. Yang P.; Širvinskas M. J.; Li B.; Heller N. W.; Rong H.; He G.; Yudin A. K.; Chen G.Teraryl Braces in Macrocycles: Synthesis and Conformational Landscape Remodeling of Peptides.J. Am. Chem. Soc.2023, 145, 13968–13978. Google Scholar
- 24. Guo P.; Chu X.; Wu C.; Qiao T.; Guan W.; Zhou C.; Wang T.; Tian C.; He G.; Chen G.Peptide Stapling by Crosslinking Two Amines with α-Ketoaldehydes Through Diverse Modified Glyoxal-Lysine Dimer Linkers.Angew. Chem. Int. Ed.2024, 63, e202318893. Google Scholar
- 25. Wang Y.; Czabala P.; Raj M.Bioinspired One-Pot Furan-Thiol-Amine Multicomponent Reaction for Making Heterocycles and Its Applications.Nat. Commun.2023, 14, 4086–4101. Google Scholar
- 26. Li B.; Wang L.; Chen X.; Chu X.; Tang H.; Zhang J.; He G.; Li L.; Chen G.Extendable Stapling of Unprotected Peptides by Crosslinking Two Amines with o-Phthalaldehyde.Nat. Commun.2022, 13, 311–319. Google Scholar
- 27. Yang B.; Wu H.; Schnier P. D.; Liu Y.; Liu J.; Wang N.; DeGrado W. F.; Wang L.Proximity-Enhanced SuFEx Chemical Cross-Linker for Specific and Multitargeting Cross-Linkingmass Spectrometry.Proc. Natl. Acad. Sci.2018, 115, 11162–11167. Google Scholar
- 28. Konc J.; Brown L.; Whiten D. R.; Zuo Y.; Ravn P.; Klenerman D.; Bernardes G. J. L.A Platform for Site-Specific DNA-Antibody Bioconjugation by Using Benzoylacrylic-Labelled Oligonucleotides.Angew. Chem. Int. Ed.2021, 60, 25905–25913. Google Scholar
- 29. Luo Q.; Tao Y.; Sheng W.; Lu J.; Wang H.Dinitroimidazoles as Bifunctional Bioconjugation Reagents for Protein Functionalization and Peptide Macrocyclization.Nat. Commun.2019, 10, 142–150. Google Scholar
- 30. Ceballos J.; Grinhagena E.; Sangouard G.; Heinis C.; Waser J.Cys–Cys and Cys–Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents.Angew. Chem. Int. Ed.2021, 60, 9022–9031. Google Scholar
- 31. Taylor K. I.; Ho J. S.; Trial H. O.; Carter A. W.; Kiessling L. L.Assessing Squarates as Amine-Reactive Probes.J. Am. Chem. Soc.2023, 145, 25056–25060. Google Scholar
- 32. Roman G.Mannich Bases in Medicinal Chemistry and Drug Design.Eur. J. Med. Chem.2015, 89, 743–816. Google Scholar
- 33. Subramaniapillai S. G.Mannich Reaction: A Versatile and Convenient Approach to Bioactive Skeletons.J. Chem. Sci.2013, 125, 467–482. Google Scholar
- 34. Olyaei A.; Sadeghpour M.Recent Advances in the Transformation Reactions of the Betti Base Derivatives.RSC Adv.2024, 14, 11811–11848. Google Scholar
- 35. Gavrilov A.; Razin S. V.; Cavalli G.In Vivo Formaldehyde Cross-Linking: It is Time for Black Box Analysis.Brief. Funct. Genomics2014, 14, 163–165. Google Scholar
- 36. Hoffman E. A.; Frey B. L.; Smith L. M.; Auble D. T.Formaldehyde Crosslinking: A Tool for the Study of Chromatin Complexes.J. Biol. Chem.2015, 290, 26404–26411. Google Scholar
- 37. Hopkinson R. J.; Schofield C. J.Deciphering Functions of Intracellular Formaldehyde: Linking Cancer and Aldehyde Metabolism, Deciphering Functions of Intracellular Formaldehyde: Linking Cancer and Aldehyde Metabolism.Biochemistry2018, 57, 904–906. Google Scholar
- 38. Clarke H. T.; Gillespie H. B.; Weisshaus S. Z.The Action of Formaldehyde on Amines and Amino Acids.J. Am. Chem. Soc.1933, 55, 4571–4587. Google Scholar
- 39. Metz B.; Kersten G. F. A.; Hoogerhout P.; Brugghe H. F.; Timmermans H. A. M.; de Jong A.; Meiring H.; ten Hove J.; Hennink W. E.; Crommelin D. J. A.; Jiskoot W.Identification of Formaldehyde-Induced Modifications in Proteins.J. Biol. Chem.2004, 279, 6235–6243. Google Scholar
- 40. Metz B.; Kersten G. F. A.; Baart G. J. E.; de Jong A.; Meiring H.; ten Hove J.; van Steenbergen M. J.; Hennink W. E.; Crommelin D. J. A.; Jiskoot W.Identification of Formaldehyde-Induced Modifications in Proteins: Reactions with Insulin.Bioconjugate Chem.2006, 17, 815–822. Google Scholar
- 41. Lu K.; Ye W.; Zhou L.; Collins L. B.; Chen X.; Gold A.; Ball L. M.; Swenberg J. A.Structural Characterization of Formaldehyde-Induced Cross-Links Between Amino Acids and Deoxynucleosides and Their Oligomers.J. Am. Chem. Soc.2010, 132, 3388–3399. Google Scholar
- 42. Kamps J. J. A. G.; Hopkinson R. J.; Schofield C. J.; Claridge T. D. W.How Formaldehyde Reacts with Amino Acids.Commun. Chem.2019, 2, 126. Google Scholar
- 43. Ruszkowski M.; Dauter Z.On Methylene-Bridged Cysteine and Lysine Residues in Proteins.Protein Sci.2016, 25, 1734–1736. Google Scholar
- 44. Zhu R.; Zhang G.; Jing M.; Han Y.; Li J.; Zhao J.; Li Y.; Chen P. R.Genetically Encoded Formaldehyde Sensors Inspired by a Protein Intra-Helical Crosslinking Reaction.Nat. Commun.2021, 12, 581–593. Google Scholar
- 45. Joshi N. S.; Whitaker L. R.; Francis M. B.A Three-Component Mannich-Type Reaction for Selective Tyrosine Bioconjugation.J. Am. Chem. Soc.2004, 126, 15942–15943. Google Scholar
- 46. McFarland J. M.; Joshi N. S.; Francis M. B.Characterization of a Three-Component Coupling Reaction on Proteins by Isotopic Labeling and Nuclear Magnetic Resonance Spectroscopy.J. Am. Chem. Soc.2008, 130, 7639–7644. Google Scholar
- 47. Li B.; Tang H.; Turlik A.; Wan Z.; Xue X. S.; Li L.; Yang X.; Li J.; He G.; Houk K. N.; Chen G.Cooperative Stapling of Native Peptides at Lysine and Tyrosine or Arginine with Formaldehyde.Angew. Chem. Int. Ed.2021, 60, 6646–6652. Google Scholar
- 48. Li B.; Wan Z.; Zheng H.; Cai S.; Tian H. W.; Tang H.; Chu X.; He G.; Guo D. S.; Xue X. S.; Chen G.Construction of Complex Macromulticyclic Peptides via Stitching with Formaldehyde and Guanidine.J. Am. Chem. Soc.2022, 144, 10080–10090. Google Scholar
- 49. Cai S. K.; Tang H.; Li B.; Shao Y.; Zhang D.; Zheng H.; Qiao T. J.; Chu X.; He G.; Xue X. S.; Chen G.Formaldehyde-Mediated Hydride Liberation of Alkylamines for Intermolecular Reactions in Hexafluoroisopropanol.J. Am. Chem. Soc.2024, 146, 5952–5963. Google Scholar
- 50. Ghareeb H.; Metanis N.Enhancing the Gastrointestinal Stability of Salmon Calcitonin Through Peptide Stapling.Chem. Commun.2023, 59, 6682–6685. Google Scholar
- 51. Tanaka K.; Masuyama T.; Hasegawa K.; Tahara T.; Mizuma H.; Wada Y.; Watanabe Y.; Fukase K.A Submicrogram-Scale Protocol for Biomolecule-Based PET Imaging by Rapid 6π-Azaelectrocyclization: Visualization of Sialic Acid Dependent Circulatory Residence of Glycoproteins.Angew. Chem. Int. Ed.2008, 47, 102–105. Google Scholar
- 52. Cal P. M. S. D.; Vicente J. B.; Pires E.; Coelho A. V.; Veiros L. F.; Cordeiro C.; Gois P. M. P.Iminoboronates: A New Strategy for Reversible Protein Modification.J. Am. Chem. Soc.2012, 134, 10299–10305. Google Scholar
- 53. Larda S. T.; Pichugin D.; Prosser R. S.Site-Specific Labeling of Protein Lysine Residues and N-Terminal Amino Groups with Indoles and Indole-Derivatives.Bioconjugate Chem.2015, 26, 2376–2383. Google Scholar
- 54. Matos M. J.; Oliveira B. L.; Martínez-Sáez N.; Guerreiro A.; Cal P. M. S. D.; Bertoldo J.; Maneiro M.; Perkins E.; Howard J.; Deery M. J.; Chalker J. M.; Corzana F.; Jimenez-Oses G.; Bernardes G. J. L.Chemo- and Regioselective Lysine Modification on Native Proteins.J. Am. Chem. Soc.2018, 140, 4004–4017. Google Scholar
- 55. Kubota K.; Dai P.; Pentelute B. L.; Buchwald S. L.Palladium Oxidative Addition Complexes for Peptide and Protein Cross-Linking.J. Am. Chem. Soc.2018, 140, 3128–3133. Google Scholar
- 56. Chen H.; Huang R.; Li Z.; Zhu W.; Chen J.; Zhan Y.; Jiang B.Selective Lysine Modification of Native Peptides via aza-Michael Addition.Org. Biomol. Chem.2017, 15, 7339. Google Scholar
- 57. Ricardo M. G.; Llanes D.; Wessjohann L. A.; Rivera D. G.Introducing the Petasis Reaction for Late-Stage Multicomponent Diversification, Labeling, and Stapling of Peptides.Angew. Chem. Int. Ed.2019, 58, 2700–2704. Google Scholar
- 58. Guo A. D.; Wei D.; Nie H. J.; Hu H.; Peng C.; Li S. T.; Yan K. N.; Zhou B. S.; Feng L.; Feng C.; Tan M.; Huang R.; Chen X. H.Light-Induced Primary Amines and o-Nitrobenzyl Alcohols Cyclization as a Versatile Photoclick Reaction for Modular Conjugation.Nat. Commun.2020, 11, 5472–5484. Google Scholar
- 59. Adusumalli S. R.; Rawale D. G.; Thakur K.; Purushottam L.; Reddy N. C.; Kalra N.; Shukla S.; Rai V.Chemoselective and Site-Selective Lysine-Directed Lysine Modification Enables Single-Site Labeling of Native Proteins.Angew. Chem. Int. Ed.2020, 59, 10332–10336. Google Scholar
- 60. Yi S.; Wei S.; Wu Q.; Wang H.; Yao Z. J.Azaphilones as Activation-Free Primary-Amine-Specific Bioconjugation Reagents for Peptides, Proteins and Lipids.Angew. Chem. Int. Ed.2022, 61, e202111783. Google Scholar
- 61. Sun H.; Xi M.; Jin Q.; Zhu Z.; Zhang Y.; Jia G.; Zhu G.; Sun M.; Zhang H.; Ren X.; Zhang Y.; Xu Z.; Huang H.; Shen J.; Li B.; Ge G.; Chen K.; Zhu W.Chemo- and Site-Selective Lysine Modification of Peptides and Proteins Under Native Conditions Using the Water-Soluble Zolinium.J. Med. Chem.2022, 65, 11840–11853. Google Scholar
- 62. Sahu T.; Chilamari M.; Rai V.Protein Inspired Chemically Orthogonal Imines for Linchpin Directed Precise and Modular Labeling of Lysine in Proteins.Chem. Commun.2022, 58, 1768–1771. Google Scholar
- 63. Molla R.; Joshi P. N.; Reddy N. C.; Biswas D.; Rai V.Protein–Protein Interaction in Multicomponent Reaction Enables Chemoselective, Site-Selective, and Modular Labeling of Native Proteins.Org. Lett.2023, 25, 6385–6390. Google Scholar
- 64. He P. Y.; Zhou Y.; Chen P. G.; Zhang M. Q.; Hu J. J.; Lim Y. J.; Zhang H.; Liu K.; Li Y. M.A Hydroxylamine-Mediated Amidination of Lysine Residues that Retains the Protein’s Positive Charge.Angew. Chem. Int. Ed.2024, 63, e202402880. Google Scholar
- 65. Wan C.; Yang D.; Song C.; Liang M.; An Y.; Lian C.; Dai C.; Ye Y.; Yin F.; Wang R.; Li Z.A Pyridinium-Based Strategy for Lysine-Selective Protein Modification and Chemoproteomic Profiling in Live Cells.Chem. Sci.2024, 15, 5340–5348. Google Scholar
- 66. Szijj P. A.; Kostadinova K. A.; Spears R. J.; Chudasama V.Tyrosine Bioconjugation-An Emergent Alternative.Org. Biomol. Chem.2020, 18, 9018–9028. Google Scholar
- 67. Zhang S.; Rodriguez L. M. D. L.; Li F. F.; Brimble M. A.Recent Developments in the Cleavage, Functionalization, and Conjugation of Proteins and Peptides at Tyrosine Residues.Chem. Sci.2023, 14, 7782–7817. Crossref, Google Scholar
- 68. Ban H.; Nagano M.; Gavrilyuk J.; Hakamata W.; Inkuma T.; Barbas C. F.Facile and Stabile Linkages Through Tyrosine: Bioconjugation Strategies with the Tyrosine-Click Reaction.Bioconjugate Chem.2013, 24, 520–532. Google Scholar
- 69. Choi E. J.; Jung D.; Kim J. S.; Lee Y.; Kim B. M.Chemoselective Tyrosine Bioconjugation Through Sulfate Click Reaction.Chem. Eur. J.2018, 24, 10948–10952. Google Scholar
- 70. Cohen D. T.; Zhang C.; Fadzen C. M.; Mijalis A. J.; Hie L.; Johnson K. D.; Shriver Z.; Plante O.; Miller S. J.; Buchwald S. L.; Pentelute B. L.A Chemoselective Strategy for Late-Stage Functionalization of Complex Small Molecules with Polypeptides and Proteins.Nat. Chem.2019, 11, 78–85. Google Scholar
- 71. Long T.; Liu L.; Tao Y.; Zhang W.; Quan J.; Zheng J.; Hegemann J. D.; Uesugi M.; Yao W.; Tian H.; Wang H.Light-Controlled Tyrosine Nitration of Proteins.Angew. Chem. Int. Ed.2021, 60, 13414–13422. Google Scholar
- 72. Maruyama K.; Ishiyama T.; Seki Y.; Sakai K.; Togo T.; Oisaki K.; Kanai M.Protein Modification at Tyrosine with Iminoxyl Radicals.J. Am. Chem. Soc.2021, 143, 19844–19855. Google Scholar
- 73. Keyes E. D.; Mifflin M. C.; Austin M. J.; Alvey B. J.; Lovely L. H.; Smith A.; Rose T. E.; Buck-Koehntop B. A.; Motwani J.; Roberts A. G.Chemoselective, Oxidation-Induced Macrocyclization of Tyrosine-Containing Peptides.J. Am. Chem. Soc.2023, 145, 10071–10081. Google Scholar
- 74. Tsunemi T.; Bernardino S. J.; Mendoza A.; Jones C. G.; Harran P. G.Syntheses of Atypically Fluorinated Peptidyl Macrocycles Through Sequential Vinylic Substitutions.Angew. Chem. Int. Ed.2020, 59, 674–678. Google Scholar
- 75. O’Hagan D.Understanding Organofluorine Chemistry. An Introduction to the C–F Bond.Chem. Soc. Rev.2008, 37, 308–319. Google Scholar
- 76. Wencel-Delord J.; Colobert F.A Remarkable Solvent Effect of Fluorinated Alcohols on Transition Metal Catalysed C–H Functionalizations.Org. Chem. Front.2016, 3, 394–400. Google Scholar
- 77. Colomer I.; Chamberlain A. E. R.; Haughey M. B.; Donohoe T. J.Hexafluoroisopropanol as a Highly Versatile Solvent.Nat. Rev. Chem.2017, 1, 0088–0099. Google Scholar
- 78. An X. D.; Xiao J.Fluorinated Alcohols: Magic Reaction Medium and Promoters for Organic Synthesis.Chem. Rec.2020, 20, 142–161. Google Scholar
- 79. Pozhydaiev V.; Power M.; Gandon V.; Moran J.; Lebœuf D.Exploiting Hexafluoroisopropanol (HFIP) in Lewis and Brønsted Acid-Catalyzed Reactions.Chem. Commun.2020, 56, 11548–11564. Google Scholar
- 80. Bhattacharya T.; Ghosh A.; Maiti D.Hexafluoroisopropanol: The Magical Solvent for Pd-Catalyzed C–H Activation.Chem. Sci.2021, 12, 3857–3870. Google Scholar
- 81. Li G. X.; Qu J.Friedel-Crafts Alkylation of Arenes with Epoxides Promoted by Fluorinated Alcohols or Water.Chem. Commun.2010, 46, 2653–2655. Google Scholar
- 82. Motiwala H. F.; Vekariya R. H.; Aube J.Intramolecular Friedel–Crafts Acylation Reaction Promoted by 1, 1, 1, 3, 3, 3-Hexafluoro-2-propanol.Org. Lett.2015, 17, 5484–5487. Google Scholar
- 83. Mo X.; Yakiwchuk J.; Dansereau J.; McCubbin J. A.; Hall D. G.Unsymmetrical Diarylmethanes by Ferroceniumboronic Acid Catalyzed Direct Friedel-Crafts Reactions with Deactivated Benzylic Alcohols: Enhanced Reactivity Due to Ion-Pairing Effects.J. Am. Chem. Soc.2015, 137, 9694–9703. Google Scholar
- 84. Vekariya R. H.; Aube J.Hexafluoro-2-Propanol-Promoted Intermolecular Friedel–Crafts Acylation Reaction.Org. Lett.2016, 18, 3534–3537. Google Scholar
- 85. Lu L.; Liu H.; Hua R.HNO3/HFIP: A Nitrating System for Arenes with Direct Observation of π-Complex Intermediates.Org. Lett.2018, 20, 3197–3201. Google Scholar
- 86. Yu L.; Li S. S.; Li W.; Yu S.; Liu Q.; Xiao J.Fluorinated Alcohol-Promoted Reaction of Chlorohydrocarbons with Diverse Nucleophiles for the Synthesis of Triarylmethanes and Tetraarylmethanes.J. Org. Chem.2018, 83, 15277–15283. Google Scholar
- 87. Colomer I.Hydroarylation of Alkenes Using Anilines in Hexafluoroisopropanol.ACS Catal.2020, 10, 6023–6029. Google Scholar
- 88. Singh S.; Mondal S.; Tiwari V.; Karmakar T.; Hazra C. K.Cooperative Friedel–Crafts Alkylation of Electron-Deficient Arenes via Catalyst Activation with Hexafluoroisopropanol.Chem. Eur. J.2023, 29, e202300180. Google Scholar
- 89. Lu L.; Hua R.Dual XH–π Interaction of Hexafluoroisopropanol with Arenes.Molecules2021, 26, 4558. Google Scholar
- 90. Hu X.; Zhao X.; Lv X.; Wu Y. B.; Bu Y.; Lu G.Ab Initio Metadynamics Simulations of Hexafluoroisopropanol Solvent Effects: Synergistic Role of Solvent H-Bonding Networks and Solvent-Solute C–H/π Interactions.Chem. Eur. J.2023, 29, e202203879. Google Scholar
- 91. Zhao X.; Hu X.; Lv X.; Wu Y. B.; Bu Y.; Lu G.How Hexafluoroisopropanol Solvent Promotes Diels–Alder Cycloadditions: Ab Initio Metadynamics Simulations.Phys. Chem. Chem. Phys.2023, 25, 14695–14699. Google Scholar
- 92. Tian F. X.; Qu J.Studies on the Origin of the Stabilizing Effects of Fluorinated Alcohols and Weakly Coordinated Fluorine-Containing Anions on Cationic Reaction Intermediates.J. Org. Chem.2022, 87, 1814–1829. Google Scholar
- 93. Takemura H.; Kotoku M.; Yasutake M.; Shinmyozu T.9-Fluoro-18-hydroxy-[3.3]metacyclophane: Synthesis and Estimation of a C–F···H–O Hydrogen Bond.Chem. Eur. J.2000, 6, 2334–2337. Google Scholar
- 94. Berkessel A.; Adrio J. A.; Hüttenhain D.; Neudörfl J. M.Unveiling the “Booster Effect” of Fluorinated Alcohol Solvents: Aggregation-Induced Conformational Changes and Cooperatively Enhanced H-Bonding.J. Am. Chem. Soc.2006, 128, 8421–8426. Google Scholar
- 95. Lemmerer M.; Riomet M.; Meyrelles R.; Maryasin B.; Gonzalez L.; Maulide N.HFIP Mediates a Direct C–C Coupling Between Michael Acceptors and Eschenmoser’s Salt.Angew. Chem. Int. Ed.2022, 61, e202109933. Google Scholar
- 96. Zeng X.; Li J.; Ng C. K.; Hammond G. B.; Xu B.(Radio)fluoroclick Reaction Enabled by a Hydrogen-Bonding Cluster.Angew. Chem. Int. Ed.2018, 57, 2924–2928. Google Scholar